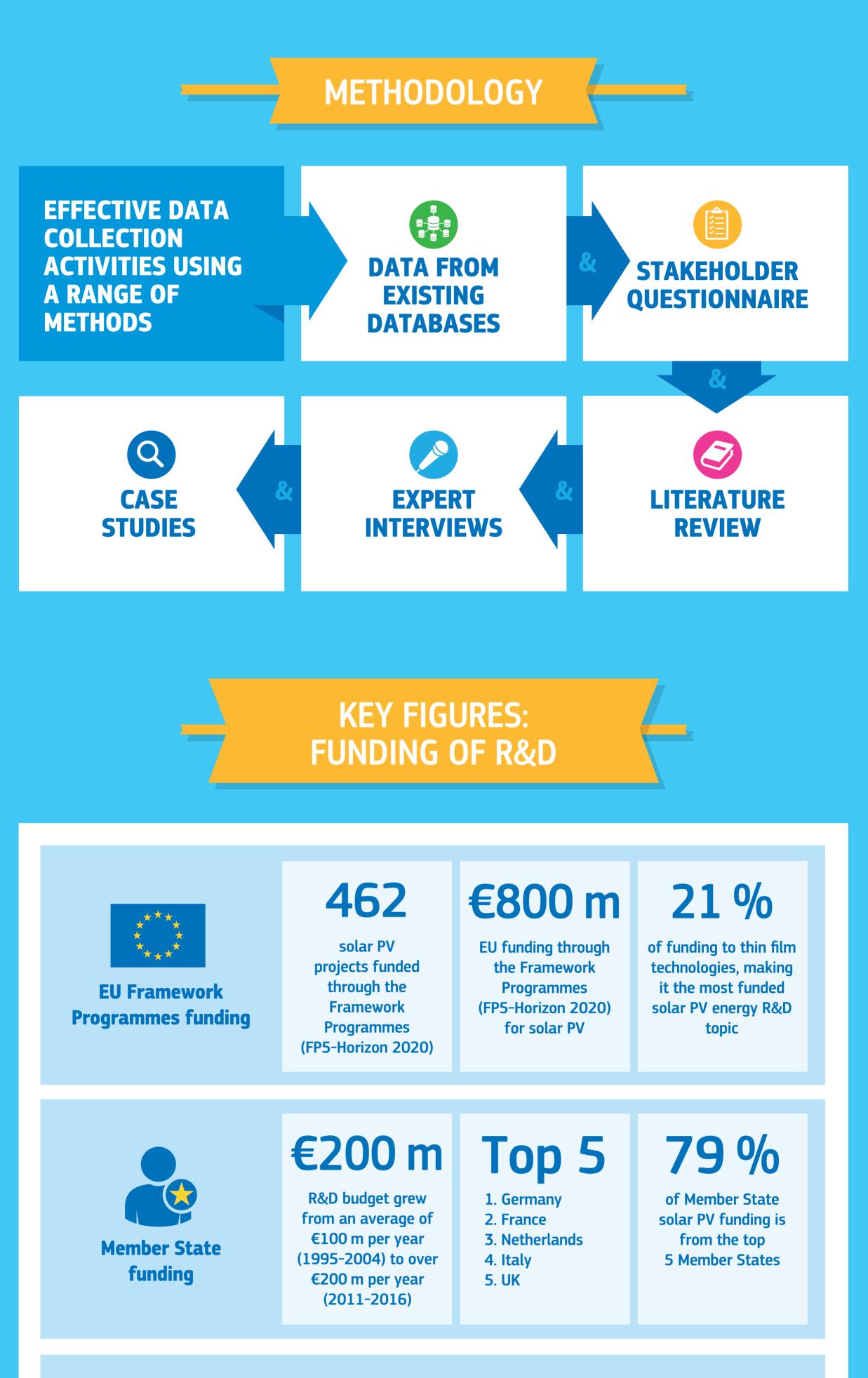




### Leadership in renewables Solar photovoltaic (PV): the impact of EU R&D funding


Bioenergy | Biofuels | Geothermal | Hydropower | Ocean | Solar PV | Solar thermal | Wind

**OBJECTIVES** 

A comprehensive study of solar PV research and development (R&D) support within the EU over the past 20 years

Identify the impact of EU R&D support of the solar PV sector Understand how the solar PV sector has developed

2





funding

Funding from the EU region for solar PV technologies is larger than that in other countries, with spending at an average of €180 m per year between 1998 and 2015. The USA provided €121 m on average between 1995 and 2015, followed by Japan which provided €83 m on average.





#### **Patents**

EU share of global patents has declined from 17 % in 2000 to 4 % in 2014

The number of EU patents filed grew from less than 500 per year in the early 2000s to approximately 1 800 per year between 2009 and 2011

From 2012 onwards, EU patents average 1 100 per year

#### **Publications**

EU-based authors were involved in 25 % of the global publications between 1995 and 2017, making it the global leader (followed closely by China and the USA)

#### **Additional impacts**

EU funding contributed to the development of several new technologies (e.g. organic PV, multi-junction cells and concentrated photovoltaics (CPV)).

EU funding contributed to cost reductions of crystalline silicon and thin-film technologies through the exploration of new materials and improved manufacturing processes

#### IMPACT ON SECTOR DEVELOPMENT

## 107 000 MW

installed capacity for electricity in 2017, growing from 600 MW in 2003

# 3.6 %

net electricity production from solar PV in 2017

# Installed capacity

Exports

Jobs

€5 billion average exports per year (2011-2015) to the rest of the world

### **€11 billion** EU solar PV industry turnover in 2016

### 100 000

people employed in the EU solar PV sector in 2016

# Less than €1 000

per kW in 2017, reducing from €3 000 in 2008 (capital expenditure (capex) – utility scale)



Turnover

### **EXAMPLES OF IMPACT FROM R&D PROJECTS**



High efficiency rear contact solar cells and ultra-powerful modules (HERCULES)

- An FP7 project that made significant advances in PV technologies to reach ultra-high efficiencies with industrially relevant processes
- The project developed large-area, bifacial silicon-heterojunction (SHJ) and interdigitated back contact (IBC) solar cells with 23 % and 24 % efficiencies (respectively) at laboratory scale. The project partners, CEA and Meyer Burger, built SHJ pilot lines with a production capacity of 2 400 wafers per hour, demonstrating the feasibility to reach industrial-scale production. The project also demonstrated important cost reductions (at the time down to EUR 0.4/W) for both technologies, showing that ultra-high efficiency devices were cost-competitive
- The project paved the way for the next generation of crystalline silicon-based PV technology. The key results are being brought towards industrial production, supported by H2O2O projects AMPERE and Next-Base, with high expectations of regaining large-scale PV manufacturing in Europe



Production technology to achieve low Cost and Highly Efficient phOtovoltaic Perovskite Solar cells (CHEOPS)

- An ongoing H2020 project developing very high-performance/low-cost PV devices based on emerging perovskite technology
- The project has achieved an efficiency of 25.2 % with silicon and perovskite-based tandem cells and demonstrated how the efficiency could increase to over 30 %. It developed a cost-efficient and simple production process – compatible with existing manufacturing lines – integrating a perovskite cell directly on top of a standard silicon-based cell. It also introduced a unified standard for measuring and testing perovskite-based PV devices to strengthen reliability and comparability
- The project partner, Oxford PV, and its subsidiary, Oxford PV Germany, received €15 million financing from the European Investment Bank in 2017. This is to support the transfer of the perovskite technology from laboratory to industrial-scale manufacturing, fostering the EU technology leadership in the field